Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116595, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640709

RESUMO

Fatty liver is the earliest response of the liver to excessive alcohol consumption. Previously we identified that chronic alcohol administration increases levels of stomach-derived hormone, ghrelin, which by reducing circulating insulin levels, ultimately contributes to the development of alcohol-associated liver disease (ALD). In addition, ghrelin directly promotes fat accumulation in hepatocytes by enhancing de novo lipogenesis. Other than promoting ALD, ghrelin is known to increase alcohol craving and intake. In this study, we used a ghrelin receptor (GHSR) knockout (KO) rat model to characterize the specific contribution of ghrelin in the development of ALD with emphasis on energy homeostasis. Male Wistar wild type (WT) and GHSR-KO rats were pair-fed the Lieber-DeCarli control or ethanol diet for 6 weeks. At the end of the feeding period, glucose tolerance test was conducted, and tissue samples were collected. We observed reduced alcohol intake by GHSR-KOs compared to a previous study where WT rats were fed ethanol diet ad libitum. Further, when the WTs were pair-fed to GHSR-KOs, the KO rats exhibited resistance to develop ALD through improving insulin secretion/sensitivity to reduce adipose lipolysis and hepatic fatty acid uptake/synthesis and increase fatty acid oxidation. Furthermore, proteomic data revealed that ethanol-fed KO exhibit less alcohol-induced mitochondrial dysfunction and oxidative stress than WT rats. Proteomic data also confirmed that the ethanol-fed KOs are insulin sensitive and are resistant to hepatic steatosis development compared to WT rats. Together, these data confirm that inhibiting ghrelin action prevent alcohol-induced liver and adipose dysfunction independent of reducing alcohol intake.

2.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-38021172

RESUMO

Our experiments aim to determine if decreasing the amount of phosphatidylcholine (PC) relative to phosphatidylethanolamine (PE) at the lipid droplet surface changes the localization of specific lipid droplet proteins. We manipulate lipid droplet phospholipids in both a cultured mouse hepatocyte (AML12) cell line and on synthetic lipid droplets. Decreasing the PC:PE ratio increases perilipin 2, decreases DGAT2, and does not change rab18 or lanosterol synthase levels on lipid droplets. These differences may be explained by the distinct structural motifs that mediate the protein-lipid droplet interactions.

4.
Biology (Basel) ; 12(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37887021

RESUMO

The liver is a major metabolic organ that performs many essential biological functions such as detoxification and the synthesis of proteins and biochemicals necessary for digestion and growth. Any disruption in normal liver function can lead to the development of more severe liver disorders. Overall, about 3 million Americans have some type of liver disease and 5.5 million people have progressive liver disease or cirrhosis, in which scar tissue replaces the healthy liver tissue. An estimated 20% to 30% of adults have excess fat in their livers, a condition called steatosis. The most common etiologies for steatosis development are (1) high caloric intake that causes non-alcoholic fatty liver disease (NAFLD) and (2) excessive alcohol consumption, which results in alcohol-associated liver disease (ALD). NAFLD is now termed "metabolic-dysfunction-associated steatotic liver disease" (MASLD), which reflects its association with the metabolic syndrome and conditions including diabetes, high blood pressure, high cholesterol and obesity. ALD represents a spectrum of liver injury that ranges from hepatic steatosis to more advanced liver pathologies, including alcoholic hepatitis (AH), alcohol-associated cirrhosis (AC) and acute AH, presenting as acute-on-chronic liver failure. The predominant liver cells, hepatocytes, comprise more than 70% of the total liver mass in human adults and are the basic metabolic cells. Mitochondria are intracellular organelles that are the principal sources of energy in hepatocytes and play a major role in oxidative metabolism and sustaining liver cell energy needs. In addition to regulating cellular energy homeostasis, mitochondria perform other key physiologic and metabolic activities, including ion homeostasis, reactive oxygen species (ROS) generation, redox signaling and participation in cell injury/death. Here, we discuss the main mechanism of mitochondrial dysfunction in chronic liver disease and some treatment strategies available for targeting mitochondria.

5.
Front Immunol ; 14: 1166171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600826

RESUMO

Background: Hepatitis B virus (HBV) infection develops as an acute or chronic liver disease, which progresses from steatosis, hepatitis, and fibrosis to end-stage liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). An increased stromal stiffness accompanies fibrosis in chronic liver diseases and is considered a strong predictor for disease progression. The goal of this study was to establish the mechanisms by which enhanced liver stiffness regulates HBV infectivity in the fibrotic liver tissue. Methods: For in vitro studies, HBV-transfected HepG2.2.15 cells were cultured on polydimethylsiloxane gels coated by polyelectrolyte multilayer films of 2 kPa (soft) or 24 kPa (stiff) rigidity mimicking the stiffness of the healthy or fibrotic liver. For in vivo studies, hepatic fibrosis was induced in C57Bl/6 parental and HBV+ transgenic (HBVTg) mice by injecting CCl4 twice a week for 6 weeks. Results: We found higher levels of HBV markers in stiff gel-attached hepatocytes accompanied by up-regulated OPN content in cell supernatants as well as suppression of anti-viral interferon-stimulated genes (ISGs). This indicates that pre-requisite "fibrotic" stiffness increases osteopontin (OPN) content and releases and suppresses anti-viral innate immunity, causing a subsequent rise in HBV markers expression in hepatocytes. In vitro results were corroborated by data from HBVTg mice administered CCl4 (HBVTg CCl4). These mice showed higher HBV RNA, DNA, HBV core antigen (HBcAg), and HBV surface antigen (HBsAg) levels after liver fibrosis induction as judged by a rise in Col1a1, SMA, MMPs, and TIMPs mRNAs and by increased liver stiffness. Importantly, CCl4-induced the pro-fibrotic activation of liver cells, and liver stiffness was higher in HBVTg mice compared with control mice. Elevation of HBV markers and OPN levels corresponded to decreased ISG activation in HBVTg CCl4 mice vs HBVTg control mice. Conclusion: Based on our data, we conclude that liver stiffness enhances OPN levels to limit anti-viral ISG activation in hepatocytes and promote an increase in HBV infectivity, thereby contributing to end-stage liver disease progression.


Assuntos
Carcinoma Hepatocelular , Doença Hepática Terminal , Hepatite B , Neoplasias Hepáticas , Camundongos , Animais , Vírus da Hepatite B , Camundongos Transgênicos , Cirrose Hepática/induzido quimicamente , Imunidade Inata , Antígenos do Núcleo do Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Antivirais
6.
Biology (Basel) ; 12(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36979154

RESUMO

The earliest manifestation of alcohol-associated liver disease is hepatic steatosis, which is characterized by fat accumulation in specialized organelles called lipid droplets (LDs). Our previous studies reported that alcohol consumption elevates the numbers and sizes of LDs in hepatocytes, which is attenuated by simultaneous treatment with the methyl group donor, betaine. Here, we examined changes in the hepatic lipidome with respect to LD size and dynamics in male Wistar rats fed for 6 weeks with control or ethanol-containing liquid diets that were supplemented with or without 10 mg betaine/mL. At the time of sacrifice, three hepatic LD fractions, LD1 (large droplets), LD2 (medium-sized droplets), and LD3 (small droplets) were isolated from each rat. Untargeted lipidomic analyses revealed that each LD fraction of ethanol-fed rats had higher phospholipids, cholesteryl esters, diacylglycerols, ceramides, and hexosylceramides compared with the corresponding fractions of pair-fed controls. Interestingly, the ratio of phosphatidylcholine to phosphatidylethanolamine (the two most abundant phospholipids on the LD surface) was lower in LD1 fraction compared with LD3 fraction, irrespective of treatment; however, this ratio was significantly lower in ethanol LD fractions compared with their respective control fractions. Betaine supplementation significantly attenuated the ethanol-induced lipidomic changes. These were mainly associated with the regulation of LD surface phospholipids, ceramides, and glycerolipid metabolism in different-sized LD fractions. In conclusion, our results show that ethanol-induced changes in the hepatic LD lipidome likely stabilizes larger-sized LDs during steatosis development. Furthermore, betaine supplementation could effectively reduce the size and dynamics of LDs to attenuate alcohol-associated hepatic steatosis.

7.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982417

RESUMO

Liver disease is one of the leading comorbidities in HIV infection. The risk of liver fibrosis development is potentiated by alcohol abuse. In our previous studies, we reported that hepatocytes exposed to HIV and acetaldehyde undergo significant apoptosis, and the engulfment of apoptotic bodies (ABs) by hepatic stellate cells (HSC) potentiates their pro-fibrotic activation. However, in addition to hepatocytes, under the same conditions, ABs can be generated from liver-infiltrating immune cells. The goal of this study is to explore whether lymphocyte-derived ABs trigger HSC profibrotic activation as strongly as hepatocyte-derived ABs. ABs were generated from Huh7.5-CYP2E1 (RLW) cells and Jurkat cells treated with HIV+acetaldehyde and co-culture with HSC to induce their pro-fibrotic activation. ABs cargo was analyzed by proteomics. ABs generated from RLW, but not from Jurkat cells activated fibrogenic genes in HSC. This was driven by the expression of hepatocyte-specific proteins in ABs cargo. One of these proteins is Hepatocyte-Derived Growth Factor, for which suppression attenuates pro-fibrotic activation of HSC. In mice humanized with only immune cells but not human hepatocytes, infected with HIV and fed ethanol, liver fibrosis was not observed. We conclude that HIV+ABs of hepatocyte origin promote HSC activation, which potentially may lead to liver fibrosis progression.


Assuntos
Vesículas Extracelulares , Infecções por HIV , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Etanol/metabolismo , Infecções por HIV/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Acetaldeído/metabolismo , Vesículas Extracelulares/metabolismo
8.
Biology (Basel) ; 12(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36829532

RESUMO

Now, much is known regarding the impact of chronic and heavy alcohol consumption on the disruption of physiological liver functions and the induction of structural distortions in the hepatic tissues in alcohol-associated liver disease (ALD). This review deliberates the effects of alcohol on the activity and properties of liver non-parenchymal cells (NPCs), which are either residential or infiltrated into the liver from the general circulation. NPCs play a pivotal role in the regulation of organ inflammation and fibrosis, both in the context of hepatotropic infections and in non-infectious settings. Here, we overview how NPC functions in ALD are regulated by second hits, such as gender and the exposure to bacterial or viral infections. As an example of the virus-mediated trigger of liver injury, we focused on HIV infections potentiated by alcohol exposure, since this combination was only limitedly studied in relation to the role of hepatic stellate cells (HSCs) in the development of liver fibrosis. The review specifically focusses on liver macrophages, HSC, and T-lymphocytes and their regulation of ALD pathogenesis and outcomes. It also illustrates the activation of NPCs by the engulfment of apoptotic bodies, a frequent event observed when hepatocytes are exposed to ethanol metabolites and infections. As an example of such a double-hit-induced apoptotic hepatocyte death, we deliberate on the hepatotoxic accumulation of HIV proteins, which in combination with ethanol metabolites, causes intensive hepatic cell death and pro-fibrotic activation of HSCs engulfing these HIV- and malondialdehyde-expressing apoptotic hepatocytes.

10.
J Clin Exp Hepatol ; 12(6): 1492-1513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340300

RESUMO

Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.

11.
Alcohol Clin Exp Res ; 46(12): 2149-2159, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316764

RESUMO

Unhealthy alcohol consumption is a global health problem. Adverse individual, public health, and socioeconomic consequences are attributable to harmful alcohol use. Epidemiological studies have shown that alcohol use disorder (AUD) and alcohol-associated liver disease (ALD) are the top two pathologies among alcohol-related diseases. Consistent with the major role that the liver plays in alcohol metabolism, uncontrolled drinking may cause significant damage to the liver. This damage is initiated by excessive fat accumulation in the liver, which can further progress to advanced liver disease. The only effective therapeutic strategies currently available for ALD are alcohol abstinence or liver transplantation. Any molecule with dual-pronged effects at the central and peripheral organs controlling addictive behaviors and associated metabolic pathways are a potentially important therapeutic target for treating AUD and ALD. Ghrelin, a hormone primarily derived from the stomach, has such properties, and regulates both behavioral and metabolic functions. In this review, we highlight recent advances in understanding the peripheral and central functions of the ghrelin system and its role in AUD and ALD pathogenesis. We first discuss the correlation between blood ghrelin concentrations and alcohol use or abstinence. Next, we discuss the role of ghrelin in alcohol-seeking behaviors and finally its role in the development of fatty liver by metabolic regulations and organ crosstalk. We propose that a better understanding of the ghrelin system could open an innovative avenue for improved treatments for AUD and associated medical consequences, including ALD.


Assuntos
Transtornos Relacionados ao Uso de Álcool , Alcoolismo , Grelina , Hepatopatias Alcoólicas , Humanos
12.
Front Physiol ; 13: 940148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267591

RESUMO

Binge drinking is the most common form of excessive alcohol use. Repeated episodes of binge drinking cause multiple organ injuries, including liver damage. We previously demonstrated that chronic ethanol administration causes a decline in the intrahepatic ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH). This decline causes impairments in essential methylation reactions that result in alcohol-induced fatty liver (steatosis) and other features of alcohol-associated liver disease (ALD). Co-treatment with betaine during chronic ethanol feeding, normalizes hepatocellular SAM:SAH ratio and alleviates many features of liver damage including steatosis. Here, we sought to examine whether betaine treatment similarly protects against liver injury in an alcohol binge-drinking model. We hypothesized that ethanol binge with prior or simultaneous betaine administration would prevent or attenuate acute alcohol-induced liver damage. Male C57Bl/6 mice were gavaged twice, 12 h apart, with either 6 g ethanol/kg BW or with an equal volume/kg BW of 0.9% NaCl. Two separate groups of mice (n = 5/group) were gavaged with 4 g betaine/kg BW, either 2 h before or simultaneously with the ethanol or saline gavages. All mice were sacrificed 8 h after the last gavage and serum and liver parameters were quantified. Ethanol binges caused a 50% decrease in hepatic SAM:SAH ratio and a >3-fold rise in liver triglycerides (p ≤ 0.05). These latter changes were accompanied by elevated serum AST and ALT activities and blood alcohol concentrations (BAC) that were ∼three-times higher than the legal limit of intoxication in humans. Mice that were treated with betaine 2 h before or simultaneously with the ethanol binges exhibited similar BAC as in mice given ethanol-alone. Both betaine treatments significantly elevated hepatic SAM levels thereby normalizing the SAM:SAH ratio and attenuating hepatic steatosis and other injury parameters, compared with mice given ethanol alone. Simultaneous betaine co-administration with ethanol was more effective in preventing or attenuating liver injury than betaine given before ethanol gavage. Our findings confirm the potential therapeutic value of betaine administration in preventing liver injury after binge drinking in an animal model.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36090199

RESUMO

Primary nonalcoholic fatty liver disease (NAFLD) is bi-directionally associated with the metabolic syndrome and its constitutive features ("factors": impaired glucose disposal, visceral obesity, arterial hypertension, and dyslipidemia). Secondary NAFLD occurs due to endocrinologic disturbances or other cofactors. This nosography tends to be outdated by the novel definition of metabolic associated fatty liver disease (MAFLD). Irrespective of nomenclature, this condition exhibits a remarkable pathogenic heterogeneity with unpredictable clinical outcomes which are heavily influenced by liver histology changes. Genetics and epigenetics, lifestyle habits [including diet and physical (in)activity] and immunity/infection appear to be major cofactors that modulate NAFLD/MAFLD outcomes, including organ dysfunction owing to liver cirrhosis and hepatocellular carcinoma, type 2 diabetes, chronic kidney disease, heart failure, and sarcopenia. The identification of cofactors for organ dysfunction that may help understand disease heterogeneity and reliably support inherently personalized medicine approaches is a research priority, thus paving the way for innovative treatment strategies.

14.
Biology (Basel) ; 11(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36101437

RESUMO

Recently, we found that both HIV and acetaldehyde, an alcohol metabolite, induce hepatocyte apoptosis, resulting in the release of large extracellular vesicles called apoptotic bodies (ABs). The engulfment of these hepatocyte ABs by hepatic stellate cells (HSC) leads to their profibrotic activation. This study aims to establish the mechanisms of HSC activation after engulfment of ABs from acetaldehyde and HIV-exposed hepatocytes (ABAGS+HIV). In vitro experiments were performed on Huh7.5-CYP (RLW) cells to generate hepatocyte ABs and LX2 cells were used as HSC. To generate ABs, RLW cells were pretreated for 24 h with acetaldehyde, then exposed overnight to HIV1ADA and to acetaldehyde for 96 h. Thereafter, ABs were isolated from cell suspension by a differential centrifugation method and incubated with LX2 cells (3:1 ratio) for profibrotic genes and protein analyses. We found that HSC internalized ABs via the tyrosine kinase receptor, Axl. While the HIV gag RNA/HIV proteins accumulated in ABs elicited no productive infection in LX2 and immune cells, they triggered ROS and IL6 generation, which, in turn, activated profibrotic genes via the JNK-ERK1/2 and JAK-STAT3 pathways. Similarly, ongoing profibrotic activation was observed in immunodeficient NSG mice fed ethanol and injected with HIV-derived RLW ABs. We conclude that HSC activation by hepatocyte ABAGS+HIV engulfment is mediated by ROS-dependent JNK-ERK1/2 and IL6 triggering of JAK-STAT3 pathways. This can partially explain the mechanisms of liver fibrosis development frequently observed among alcohol abusing PLWH.

15.
Gastroenterology ; 163(4): 1064-1078.e10, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788346

RESUMO

BACKGROUND & AIMS: Epidemiological studies have established alcohol and smoking as independent risk factors for recurrent acute pancreatitis and chronic pancreatitis. However, the molecular players responsible for the progressive loss of pancreatic parenchyma and fibroinflammatory response are poorly characterized. METHODS: Tandem mass tag-based proteomic and bioinformatics analyses were performed on the pancreata of mice exposed to alcohol, cigarette smoke, or a combination of alcohol and cigarette smoke. Biochemical, immunohistochemistry, and transcriptome analyses were performed on the pancreatic tissues and primary acinar cells treated with cerulein in combination with ethanol (50 mmol/L) and cigarette smoke extract (40 µg/mL) for the mechanistic studies. RESULTS: A unique alteration in the pancreatic proteome was observed in mice exposed chronically to the combination of alcohol and cigarette smoke (56.5%) compared with cigarette smoke (21%) or alcohol (17%) alone. The formation of toxic metabolites (P < .001) and attenuated unfolded protein response (P < .04) were the significantly altered pathways on combined exposure. The extracellular matrix (ECM) proteins showed stable malondialdehyde-acetaldehyde (MAA) adducts in the pancreata of the combination group and chronic pancreatitis patients with a history of smoking and alcohol consumption. Interestingly, MAA-ECM adducts significantly suppressed expression of X-box-binding protein-1, leading to acinar cell death in the presence of alcohol and smoking. The stable MAA-ECM adducts persist even after alcohol and smoking cessation, and significantly delay pancreatic regeneration by abrogating the expression of cyclin-dependent kinases (CDK7 and CDK5) and regeneration markers. CONCLUSIONS: The combined alcohol and smoking generate stable MAA-ECM adducts that increase endoplasmic reticulum stress and acinar cell death due to attenuated unfolded protein response and suppress expression of cell cycle regulators. Targeting aldehyde adducts might provide a novel therapeutic strategy for the management of recurrent acute pancreatitis and chronic pancreatitis.


Assuntos
Acetaldeído , Pancreatite Crônica , Acetaldeído/metabolismo , Doença Aguda , Aldeídos , Animais , Ceruletídeo , Quinases Ciclina-Dependentes/metabolismo , Etanol/toxicidade , Proteínas da Matriz Extracelular/metabolismo , Malondialdeído/metabolismo , Camundongos , Proteoma/metabolismo , Proteômica , Fumar/efeitos adversos , Resposta a Proteínas não Dobradas
16.
Front Immunol ; 13: 866795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669781

RESUMO

Alcohol consumption with concurrent cigarette smoking produces malondialdehyde acetaldehyde (MAA)-adducted lung proteins. Lung surfactant protein D (SPD) supports innate immunity via bacterial aggregation and lysis, as well as by enhancing macrophage-binding and phagocytosis. MAA-adducted SPD (SPD-MAA) has negative effects on lung cilia beating, macrophage function, and epithelial cell injury repair. Because changes in SPD multimer structure are known to impact SPD function, we hypothesized that MAA-adduction changes both SPD structure and function. Purified human SPD and SPD-MAA (1 mg/mL) were resolved by gel filtration using Sephadex G-200 and protein concentration of each fraction determined by Bradford assay. Fractions were immobilized onto nitrocellulose by slot blot and assayed by Western blot using antibodies to SPD and to MAA. Binding of SPD and SPD-MAA was determined fluorometrically using GFP-labeled Streptococcus pneumoniae (GFP-SP). Anti-bacterial aggregation of GFP-SP and macrophage bacterial phagocytosis were assayed by microscopy and permeability determined by bacterial phosphatase release. Viral injury was measured as LDH release in RSV-treated airway epithelial cells. Three sizes of SPD were resolved by gel chromatography as monomeric, trimeric, and multimeric forms. SPD multimer was the most prevalent, while the majority of SPD-MAA eluted as trimer and monomer. SPD dose-dependently bound to GFP-SP, but SPD-MAA binding to bacteria was significantly reduced. SPD enhanced, but MAA adduction of SPD prevented, both aggregation and macrophage phagocytosis of GFP-SP. Likewise, SPD increased bacterial permeability while SPD-MAA did not. In the presence of RSV, BEAS-2B cell viability was enhanced by SPD, but not protected by SPD-MAA. Our results demonstrate that MAA adduction changes the quaternary structure of SPD from multimer to trimer and monomer leading to a decrease in the native anti-microbial function of SPD. These findings suggest one mechanism for increased pneumonia observed in alcohol use disorders.


Assuntos
Acetaldeído , Alcoolismo , Acetaldeído/química , Acetaldeído/metabolismo , Alcoolismo/metabolismo , Humanos , Pulmão/metabolismo , Malondialdeído , Proteína D Associada a Surfactante Pulmonar/metabolismo
17.
Front Physiol ; 13: 831004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264978

RESUMO

This review covers some important new aspects of the alcohol-induced communications between liver parenchymal and non-parenchymal cells leading to liver injury development. The information exchange between various cell types may promote end-stage liver disease progression and involves multiple mechanisms, such as direct cell-to-cell interactions, extracellular vesicles (EVs) or chemokines, cytokines, and growth factors contained in extracellular fluids/cell culture supernatants. Here, we highlighted the role of EVs derived from alcohol-exposed hepatocytes (HCs) in activation of non-parenchymal cells, liver macrophages (LM), and hepatic stellate cells (HSC). The review also concentrates on EV-mediated crosstalk between liver parenchymal and non-parenchymal cells in the settings of HIV- and alcohol co-exposure. In addition, we overviewed the literature on the crosstalk between cell death pathways and inflammasome activation in alcohol-activated HCs and macrophages. Furthermore, we covered highly clinically relevant studies on the role of non-inflammatory factors, sinusoidal pressure (SP), and hepatic arterialization in alcohol-induced hepatic fibrogenesis. We strongly believe that the review will disclose major mechanisms of cell-to-cell communications pertained to alcohol-induced liver injury progression and will identify therapeutically important targets, which can be used for alcohol-associated liver disease (ALD) prevention.

18.
Exp Mol Pathol ; 126: 104750, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35192844

RESUMO

The present review is based on the research presented at the symposium dedicated to the legacy of the two scientists that made important discoveries in the field of alcohol-induced liver damage: Professors C.S. Lieber and S.W. French. The invited speakers described pharmacological, toxicological and patho-physiological effects of alcohol misuse. Moreover, genetic biomarkers determining adverse drug reactions due to interactions between therapeutics used for chronic or infectious diseases and alcohol exposure were discussed. The researchers presented their work in areas of alcohol-induced impairment in lipid protein trafficking and endocytosis, as well as the role of lipids in the development of fatty liver. The researchers showed that alcohol leads to covalent modifications that promote hepatic dysfunction and injury. We concluded that using new advanced techniques and research ideas leads to important discoveries in science.


Assuntos
Hepatopatias Alcoólicas , Pesquisa Translacional Biomédica , Etanol , Humanos , Fígado , Hepatopatias Alcoólicas/genética
19.
Alcohol Clin Exp Res ; 46(3): 359-370, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35076108

RESUMO

Progression of chronic infections to end-stage diseases and poor treatment results are frequently associated with alcohol abuse. Alcohol metabolism suppresses innate and adaptive immunity leading to increased viral load and its spread. In case of hepatotropic infections, viruses accelerate alcohol-induced hepatitis and liver fibrosis, thereby promoting end-stage outcomes, including cirrhosis and hepatocellular carcinoma (HCC). In this review, we concentrate on several unexplored aspects of these phenomena, which illustrate the combined effects of viral/bacterial infections and alcohol in disease development. We review alcohol-induced alterations implicated in immunometabolism as a central mechanism impacting metabolic homeostasis and viral pathogenesis in Simian immunodeficiency virus/human immunodeficiency virus infection. Furthermore, in hepatocytes, both HIV infection and alcohol activate oxidative stress to cause lysosomal dysfunction and leakage and apoptotic cell death, thereby increasing hepatotoxicity. In addition, we discuss the mechanisms of hepatocellular carcinoma and tumor signaling in hepatitis C virus infection. Finally, we analyze studies that review and describe the immune derangements in hepatotropic viral infections focusing on the development of novel targets and strategies to restore effective immunocompetency in alcohol-associated liver disease. In conclusion, alcohol exacerbates the pathogenesis of viral infections, contributing to a chronic course and poor outcomes, but the mechanisms behind these events are virus specific and depend on virus-alcohol interactions, which differ among the various infections.


Assuntos
Carcinoma Hepatocelular , Infecções por HIV , Hepatite C , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/patologia , Etanol/efeitos adversos , Hepacivirus , Humanos , Cirrose Hepática
20.
Alcohol Clin Exp Res ; 46(1): 40-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773268

RESUMO

BACKGROUND AND AIMS: Approximately 3.5% of the global population is chronically infected with Hepatitis B Virus (HBV), which puts them at high risk of end-stage liver disease, with the risk of persistent infection potentiated by alcohol consumption. However, the mechanisms underlying the effects of alcohol on HBV persistence remain unclear. Here, we aimed to establish in vivo/ex vivo evidence that alcohol suppresses HBV peptides-major histocompatibility complex (MHC) class I antigen display on primary human hepatocytes (PHH), which diminishes the recognition and clearance of HBV-infected hepatocytes by cytotoxic T-lymphocytes (CTLs). METHODS: We used fumarylacetoacetate hydrolase (Fah)-/-, Rag2-/-, common cytokine receptor gamma chain knock-out (FRG-KO) humanized mice transplanted with human leukocyte antigen-A2 (HLA-A2)-positive hepatocytes. The mice were HBV-infected and fed control and alcohol diets. Isolated hepatocytes were exposed ex vivo to HBV 18-27-HLA-A2-restricted CTLs to quantify cytotoxicity. For mechanistic studies, we measured proteasome activities, unfolded protein response (UPR), and endoplasmic reticulum (ER) stress in hepatocytes from HBV-infected humanized mouse livers. RESULTS AND CONCLUSIONS: We found that alcohol feeding attenuated HBV core 18-27-HLA-A2 complex presentation on infected hepatocytes due to the suppression of proteasome function and ER stress induction, which diminished both the processing of HBV peptides and trafficking of HBV-MHC class I complexes to the hepatocyte surface. This alcohol-mediated decrease in MHC class I-restricted antigen presentation of the CTL epitope on target hepatocytes reduced the CTL-specific elimination of infected cells, potentially leading to HBV-infection persistence, which promotes end-stage liver disease outcomes.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Etanol/farmacologia , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Hepatócitos/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Doença Hepática Terminal/virologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Antígeno HLA-A2/análise , Hepatócitos/transplante , Hepatócitos/virologia , Xenoenxertos , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Camundongos , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/fisiologia , Resposta a Proteínas não Dobradas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA